The Physics of Compressive Sensing and the Gradient-Based Recovery Algorithms

نویسندگان

  • Qi Dai
  • Wei Sha
چکیده

The physics of compressive sensing (CS) and the gradient-based recovery algorithms are presented. First, the different forms for CS are summarized. Second, the physical meanings of coherence and measurement are given. Third, the gradient-based recovery algorithms and their geometry explanations are provided. Finally, we conclude the report and give some suggestion for future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Fast Binary Compressive Sensing via \ell_0 Gradient Descent

We present a fast Compressive Sensing algorithm for the reconstruction of binary signals {0, 1}-valued binary signals from its linear measurements. The proposed algorithm minimizes a non-convex penalty function that is given by a weighted sum of smoothed l0 norms, under the [0, 1] box-constraint. It is experimentally shown that the proposed algorithm is not only significantly faster than linear...

متن کامل

Streaming Measurements in Compressive Sensing: `1 Filtering

The central framework for signal recovery in compressive sensing is `1 norm minimization. In recent years, tremendous progress has been made on algorithms, typically based on some kind of gradient descent or Newton iterations, for performing `1 norm minimization. These algorithms, however, are for the most part “static”: they focus on finding the solution for a fixed set of measurements. In thi...

متن کامل

A New Analysis of Compressive Sensing by Stochastic Proximal Gradient Descent

In this manuscript, we analyze the sparse signal recovery (compressive sensing) problem from the perspective of convex optimization by stochastic proximal gradient descent. This view allows us to significantly simplify the recovery analysis of compressive sensing. More importantly, it leads to an efficient optimization algorithm for solving the regularized optimization problem related to the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0906.1487  شماره 

صفحات  -

تاریخ انتشار 2009